PLAN LOCAL D'URBANISME (PLU)

COMMUNE DE MIREVAL

Département de l'Hérault (34)

6.8

Risques liés aux argiles

Approbation de la révision générale du POS : DCM du 3 février 1995 Prescription d'élaboration du PLU : DCM du 10 juillet 2014

Arrêt du projet de PLU : DCM du 20 septembre 2016

Septembre 2016

ADELE-SFI
434 rue Etienne Lenoir
30 900 Nîmes
Tél./Fax : 04 66 64 01 74
adelesfi@wanadoo.fr
www.adele-sfi.com

Vu pour être annexé à la délibération du 20 septembre 2016

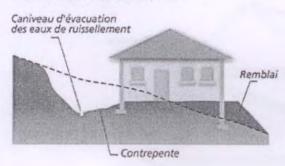
ANNEXE 6.8

6.8.1. FICHES RELATIVES AUX DISPOSITIONS CONSTRUCTIVES PREALABLES A METTRE EN ŒUVRE POUR CE TYPE D'ALEA

6.8.2. CARTOGRAPHIE DE L'ALEA « RETRAIT GONFLEMENT ARGILES » COMMUNE DE MIREVAL

ADAPTATION DES FONDATIONS

Problème à résoudre: Pour la majorité des bâtiments d'habitation « classiques », les structures sont fondées superficiellement, dans la tranche du terrain concernée par les variations saisonnières de teneur en eau. Les sinistres sont ainsi dus, pour une grande part, à une inadaptation dans la conception et/ou la réalisation des fondations.


Descriptif du dispositif : Les fondations doivent respecter quelques grands principes :

- adopter une profondeur d'ancrage suffisante, à adapter en fonction de la sensibilité du site au phénomène ;
- éviter toute dissymétrie dans la profondeur d'ancrage ;
- préférer les fondations continues et armées, bétonnées à pleine fouille sur toute leur hauteur.

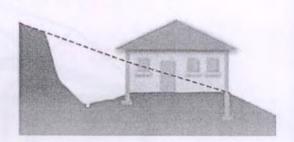

Champ d'application : Concerne sans restriction tout type de bâtiment, d'habitation ou d'activités.

Schéma de principe

Plate-forme en déblais-remblais

Plate-forme en déblais

Conditions de mise en œuvre :

- La profondeur des fondations doit tenir compte de la capacité de retrait du sous-sol. Seule une étude géotechnique spécifique est en mesure de déterminer précisément cette capacité. À titre indicatif, on considère que cette profondeur d'ancrage (si les autres prescriptions – chaînage, trottoir périphérique, etc. – sont mises en œuvre), qui doit être au moins égale à celle imposée par la mise hors gel, doit atteindre au minimum 0,80 m en zone d'aléa faible à moyen et 1,20 m en zone d'aléa fort. Une prédisposition marquée du site peut cependant nécessiter de rechercher un niveau d'assise sensiblement plus profond.

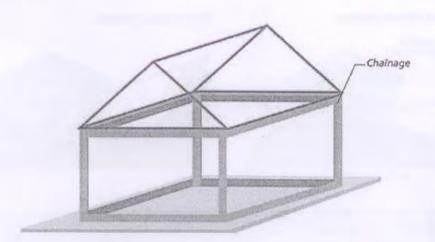
Un radier généralisé, conçu et réalisé dans les règles de l'art (attention à descendre suffisamment la bêche périmètrique), peut constituer une bonne alternative à un approfondissement des fondations.

- Les fondations doivent être ancrées de manière homogène sur tout le pourtour du bâtiment (ceci vaut notamment pour les terrains en pente (où l'ancrage aval doit être au moins aussi important que l'ancrage amont) ou à sous-sol hétérogène. En particulier, les sous-sols partiels qui induisent des hétérogénéités d'ancrage sont à éviter à tout prix. Sur des terrains en pente, cette nécessité d'homogénéité de l'ancrage peut conduire à la réalisation de redans.

Lorsque le bâtiment est installé sur une plate-forme déblai/remblai ou déblai, il est conseillé de descendre les fondations « aval » à une profondeur supérieure à celle des fondations « amont ». Les fondations doivent suivre les préconisations formulées dans le DTU 13.12.

Les études permettant de préciser la sensibilité du sous-sol au phénomène et de définir les dispositions préventives nécessaires (d'ordre constructif ou autre) doivent être réalisées par un bureau d'études spécialisé, dont la liste peut être obtenue auprès de l'Union Française des Géologues (tél : 01 47 07 91 95).

RIGIDIFICATION DE LA STRUCTURE DU BÂTIMENT



Problème à résoudre : Un grand nombre de sinistres concernent des constructions dont la rigidité, insuffisante, ne leur permet pas de résister aux distorsions générées par les mouvements différentiels du sous-sol. Une structure parfaitement rigide permet au contraire une répartition des efforts permettant de minimiser les désordres de façon significative, à défaut de les écarter.

Descriptif du dispositif: La rigidification de la structure du bâtiment nécessite la mise en œuvre de chaînages horizontaux (haut et bas) et verticaux (poteaux d'angle) pour les murs porteurs liaisonnés.

Champ d'application : concerne sans restriction tout type de bâtiment, d'habitation ou d'activités.

Schéma de principe

Conditions de mise en œuvre : Le dispositif mis en œuvre doit suivre les préconisations formulées dans le DTU 20.1 :

- « Les murs en maçonnerie porteuse et les murs en maçonnerie de remplissage doivent être ceinturés à chaque étage, au niveau des planchers, ainsi qu'en couronnement, par un chaînage horizontal en béton armé, continu, fermé ; ce chaînage ceinture les façades et les relie au droit de chaque refend ». Cette mesure s'applique notamment pour les murs pignons au niveau du rampant de la couverture.
- « Les chaînages verticaux doivent être réalisés au moins dans les angles saillants et rentrant des maçonneries, ainsi que de part et d'autre des joints de fractionnement du bâtiment ».

La liaison entre chaînages horizontaux et verticaux doit faire l'objet d'une attention particulière : ancrage des armatures par retour d'équerre, recouvrement des armatures assurant une continuité. Les armatures des divers chaînages doivent faire l'objet de liaisons efficaces (recouvrement, ancrage, etc.), notamment dans les angles du bâtiment.

Mesures d'accompagnement : D'autres mesures permettent de rigidifier la structure :

- la réalisation d'un soubassement « monobloc » (préférer les sous-sols complets aux sous-sols partiels, les radiers ou les planchers sur vide sanitaire, plutôt que les dallages sur terre-plein) ;
- la réalisation de linteaux au-dessus des ouvertures.

RÉALISATION D'UNE CEINTURE ÉTANCHE AUTOUR DU BÂTIMENT

Problème à résoudre : Les désordres aux constructions résultent notamment des fortes différences de teneur en eau existant entre le sol situé sous le bâtiment qui est à l'équilibre hydrique (terrains non exposés à l'évaporation, qui constituent également le sol d'assise de la structure) et le sol situé aux alentours qui est soumis à évaporation saisonnière. Il en résulte des variations de teneur en eau importantes et brutales, au droit des fondations.

Descriptif du dispositif: Le dispositif proposé consiste à entourer le bâti d'un système étanche le plus large possible (minimum 1,50 m), protégeant ainsi sa périphérie immédiate de l'évaporation et éloignant du pied des façades les eaux de ruissellement.

Champ d'application : concerne sans restriction tout type de bâtiment, d'habitation ou d'activités.

Schéma de principe

Conditions de mise en œuvre : L'étanchéité pourra être assurée, soit :

- par la réalisation d'un trottoir périphérique (selon les possibilités en fonction de l'implantation du bâtiment et de la mitoyenneté), en béton ou tout autre matériau présentant une étanchéité suffisante;
- par la mise en place sous la terre végétale d'une géomembrane enterrée, dans les cas notamment où un revêtement superficiel étanche n'est pas réalisable (en particulier dans les terrains en pente). La géomembrane doit être raccordée aux façades par un système de couvre-joint, et être protégée par une couche de forme sur laquelle peut être mis en œuvre un revêtement adapté à l'environnement (pavés, etc).

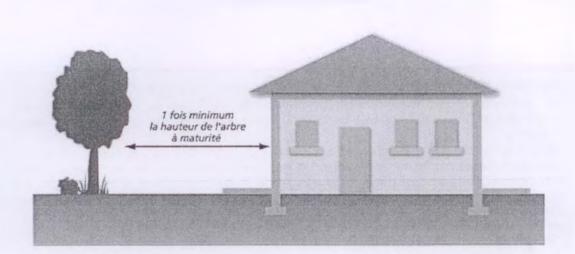
Une légère pente doit être donnée au dispositif, de façon à éloigner les eaux du bâtiment, l'idéal étant que ces eaux soient reprises par un réseau d'évacuation étanche.

Pour être pleinement efficace, le dispositif d'étanchéité doit être mis en œuvre sur la totalité du pourtour de la construction. Une difficulté peut se poser lorsque l'une des façades est située en limite de propriété (nécessitant un accord avec le propriétaire mitoyen). Le non-respect de ce principe est de nature à favoriser les désordres.

Mesures d'accompagnement : Les eaux de toitures seront collectées dans des ouvrages étanches et évacués loin du bâtiment [cf. fiche n°6].

À défaut de la mise en place d'un dispositif étanche en périphérie immédiate du bâtiment, les eaux de ruissellement pourront être éloignées des façades (aussi loin que possible), par des contre-pentes.

ÉLOIGNEMENT DE LA VÉGÉTATION DU BÂTI



Problème à résoudre: Empêcher le sol de fondation d'être soumis à d'importantes et brutales variations de teneur en eau. Les racines des végétaux soutirant l'eau du sol et induisant ainsi des mouvements préjudiciables au bâtiment, il convient d'extraire le bâti de la zone d'influence de la végétation présente à ses abords (arbres et arbustes).

Descriptif du dispositif: La technique consiste à abattre les arbres isolés situés à une distance inférieure à une fois leur hauteur à maturité par rapport à l'emprise de la construction (une fois et demi dans le cas de rideaux d'arbres ou d'arbustes). Un élagage régulier et sévère, permettant de minimiser la capacité d'évaporation des arbres et donc de réduire significativement leurs prélèvements en eau dans le sol, peut constituer une alternative à l'abattage. Attention, l'abattage des arbres est néanmoins également susceptible de générer un gonflement du fait d'une augmentation de la teneur en eau des sols qui va en résulter; il est donc préférable de privilégier un élagage régulier de la végétation concernée.

Champ d'application: Concerne tout type de bâtiment d'habitation ou d'activités situé à une distance d'arbres isolés inférieure à 1 fois leur hauteur à maturité (une fois et demi dans le cas de rideaux d'arbres ou d'arbustes). Bien que certaines essences aient un impact plus important que d'autres, il est difficile de limiter cette mesure à ces espèces, car ce serait faire abstraction de critères liés à la nature du sol. De plus, il faut se garder de sous-estimer l'influence de la végétation arbustive, qui devra également, en site sensible, être tenue éloignée du bâti.

Schéma de principe

Suite page suivante

ÉLOIGNEMENT DE LA VÉGÉTATION DU BÂTI

Précautions de mise en œuvre : L'abattage des arbres situés à faible distance de la construction ne constitue une mesure efficace que si leurs racines n'ont pas atteint le sol sous les fondations. Dans le cas contraire, un risque de soulèvement n'est pas à exclure.

Si aucune action d'éloignement de la végétation (ou l'absence d'un écran anti-racines – [cf. Fiche n°5]) n'est mise en œuvre ceci pourra être compensé par l'apport d'eau en quantité suffisante aux arbres concernés par arrosage. Mais cette action sera imparfaite, notamment par le fait qu'elle pourrait provoquer un ramollissement du sol d'assise du bâtiment.

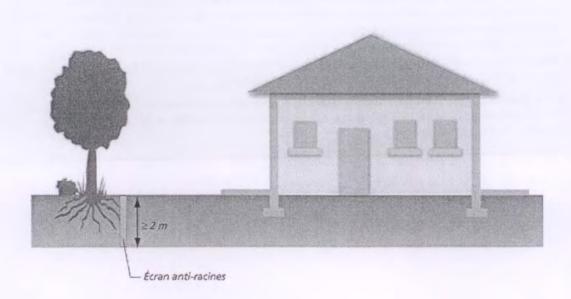
Mesure altérnative: Mise en place d'un écran anti-racines pour les arbres isolés situés à moins de une fois leur hauteur à maturité par rapport à l'emprise de la construction (une fois et demi dans le cas de rideaux d'arbres ou d'arbustes). [cf. fiche n°5]

À destination des projets nouveaux : Si des arbres existent à proximité de l'emprise projetée du bâtiment, il convient de tenir compte de leur influence potentielle à l'occasion tout particulièrement d'une sécheresse ou de leur éventuelle disparition future, à savoir selon le cas :

- tenter autant que possible d'implanter le bâti à l'extérieur de leur « champ d'action » (on considère dans le cas général que le domaine d'influence est de une fois la hauteur de l'arbre à l'âge adulte pour des arbres isolés, une fois et demi cette hauteur dans le cas de rideaux d'arbres ou d'arbustes) ;
- tenter d'abattre les arbres gênants le plus en amont possible du début des travaux (de façon à permettre un rétablissement des conditions « naturelles » de teneur en eau du sous-sol) ;
- descendre les fondations au-dessous de la cote à laquelle les racines n'influent plus sur les variations de teneur en eau (de l'ordre de 4 m à 5 m maximum).

Si des plantations sont projetées, on cherchera à respecter une distance minimale équivalente à une fois la hauteur à maturité de l'arbre entre celui-ci et la construction. A défaut, on envisagera la mise en place d'un écran anti-racines.

CRÉATION D'UN ÉCRAN ANTI-RACINES



Problème à résoudre: Empêcher le sol de fondation d'être soumis à d'importantes et brutales variations de teneur en eau. Les racines des végétaux soutirant l'eau du sol et induisant ainsi des mouvements préjudiciables au bâtiment, il convient d'extraire le bâti de la zone d'influence de la végétation présente à ses abords.

Descriptif du dispositif: La technique consiste à mettre en place, le long des façades concernées, un écran s'opposant aux racines, d'une profondeur supérieure à celle du système racinaire des arbres présents (avec une profondeur minimale de 2 m). Ce dispositif est constitué en général d'un écran rigide (matériau traité au ciment), associé à une géomembrane (le long de laquelle des herbicides sont injectés), mis en place verticalement dans une tranchée.

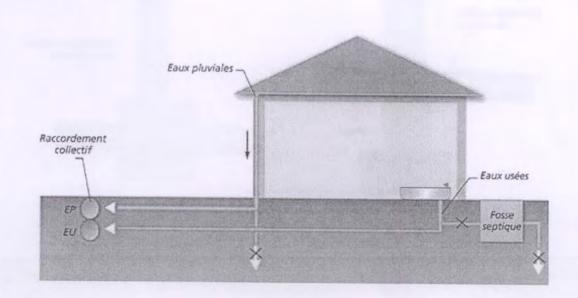
Champ d'application : Concerne tout type de bâtiment d'habitation ou d'activités situé à une distance d'arbres isolés inférieure à une fois leur hauteur à maturité.

Schéma de principe

Précautions de mise en œuvre : L'écran anti-racines doit pouvoir présenter des garanties de pérennité suffisantes, notamment vis-à-vis de l'étanchéité et de la résistance. Un soin particulier doit être porté sur les matériaux utilisés (caractéristiques de la géomembrane, etc). L'appel à un professionnel peut s'avérer nécessaire pour ce point, voire également pour la réalisation du dispositif.

Mesure alternative: Abattage des arbres isolés situés à une distance inférieure à une fois leur hauteur à maturité, par rapport à l'emprise de la construction (une fois et demi dans le cas de rideaux d'arbres ou d'arbustes). [Voir fiche n°4]

RACCORDEMENT DES RÉSEAUX D'EAUX AU RÉSEAU COLLECTIF



Problème à résoudre : De façon à éviter les variations localisées d'humidité, il convient de privilégier le rejet des eaux pluviales – EP - (ruissellement de toitures, terrasses, etc.) et des eaux usées – EU - dans les réseaux collectifs (lorsque ceux-ci existent). La ré-infiltration in situ des EP et des EU conduit à ré-injecter dans le premier cas des volumes d'eau potentiellement importants et de façon ponctuelle, dans le second cas des volumes limités mais de façon « chronique ».

Descriptif du dispositif: Il vise, lorsque l'assainissement s'effectue de façon autonome, à débrancher les filières existantes (puits perdu, fosse septique + champ d'épandage, etc.) et à diriger les flux à traiter jusqu'au réseau collectif (« tout à l'égout » ou réseau séparatif).

Champ d'application: Concerne tout type de bâtiment d'habitation ou d'activités assaini de façon individuelle avec ré-infiltration in situ (les filières avec rejet au milieu hydraulique superficiel ne sont pas concernées), et situé à distance raisonnable (c'est-à-dire économiquement acceptable) du réseau collectif.

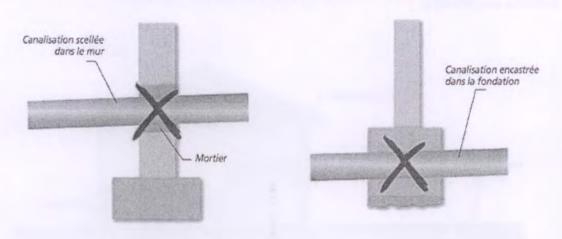
Schéma de principe

Conditions de mise en œuvre : Le raccordement au réseau collectif doit être privilégié, sans préjudice des directives sanitaires en vigueur.

Le raccordement nécessite l'accord préalable du gestionnaire de réseau. Le branchement à un réseau collectif d'assainissement implique pour le particulier d'être assujetti à une redevance d'assainissement comprenant une part variable (assise sur le volume d'eau potable consommé) et le cas échéant une partie fixe.

Mesure alternative: En l'absence de réseau collectif dans l'environnement proche du bâti et du nécessaire maintien de l'assainissement autonome, il convient de respecter une distance d'une quinzaine de mètres entre le bâtiment et le(s) point(s) de rejet (à examiner avec l'autorité responsable de l'assainissement).

ÉTANCHÉIFICATION DES CANALISATIONS ENTERRÉES


Problème à résoudre: De façon à éviter les variations localisées d'humidité, il convient de s'assurer de l'absence de fuites au niveau des réseaux souterrains « humides ». Ces fuites peuvent résulter des mouvements différentiels du sous-sol occasionnés par le phénomène.

Descriptif du dispositif : Le principe consiste à étanchéifier l'ensemble des canalisations d'évacuation enterrées (eaux pluviales, eaux usées). Leur tracé et leur conception seront en outre étudiés de façon à minimiser le risque de rupture.

Champ d'application : Concerne tout type de bâtiment d'habitation ou d'activités, assaini de façon individuelle ou collective.

Schéma de principe

Les canalisations ne doivent pas être bloquées dans le gros-œuvre

Conditions de mise en œuvre : Les canalisations seront réalisées avec des matériaux non fragiles (c'est-à-dire susceptibles de subir des déformations sans rupture). Elles seront aussi flexibles que possibles, de façon à supporter sans dommage les mouvements du sol.

L'étanchéité des différents réseaux sera assurée par la mise en place notamment de joints souples au niveau des raccordements.

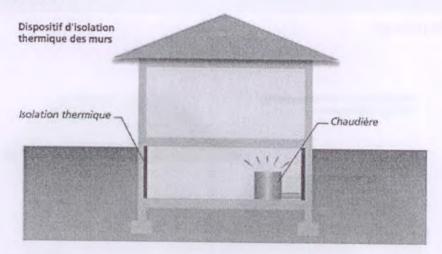
De façon à ce que les mouvements subis par le bâti ne se « transmettent » pas aux réseaux, on s'assurera que les canalisations ne soient pas bloquées dans le gros œuvre, aux points d'entrée dans le bâti.

Les entrées et sorties des canalisations du bâtiment s'effectueront autant que possible perpendiculairement par rapport aux murs (tout du moins avec un angle aussi proche que possible de l'angle droit).

Mesures d'accompagnement : Autant que faire se peut, on évitera de faire longer le bâtiment par les canalisations de façon à limiter l'impact des fuites occasionnées, en cas de rupture, sur les structures proches.

Il est souhaitable de réaliser de façon régulière des essais d'étanchéité de l'ensemble des réseaux « humides ».

LIMITER LES CONSÉQUENCES D'UNE SOURCE DE CHALEUR EN SOUS-SOL



Problème à résoudre : La présence dans le sous-sol d'un bâtiment d'une source de chaleur importante, en particulier d'une chaudière, est susceptible de renforcer les variations localisées d'humidité dans la partie supérieure du terrain. Elles sont d'autant plus préjudiciables qu'elles s'effectuent au contact immédiat des structures.

Descriptif du dispositif: La mesure consiste à prévoir un dispositif spécifique d'isolation thermique des murs se trouvant à proximité de la source de chaleur (limitation des échanges thermiques).

Champ d'application : Concerne tous les murs de la pièce accueillant la source de chaleur, ainsi que toutes parties de la sous-structure du bâtiment au contact de canalisations « chaudes ».

Schéma de principe

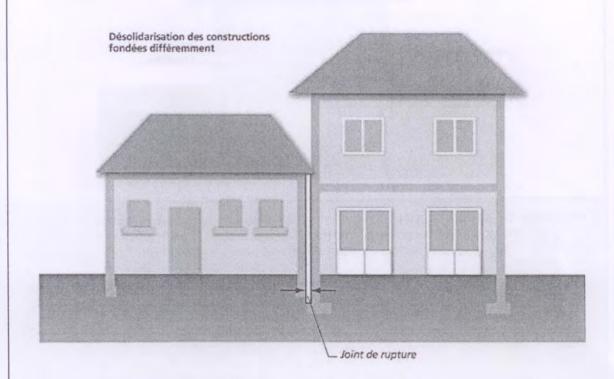
Conditions de mise en œuvre : Dans l'Union Européenne, les produits d'isolation thermique pour la construction doivent posséder la marque CE depuis mars 2003 et respecter les normes EN 13162 à EN 13171 (selon leur nature). Il pourra s'agir de produits standards de type polystyrène ou laine minérale.

Remarque: La loi de finances pour 2005 a créé un crédit d'impôt dédié au développement durable et aux économies d'énergie. Destinée à renforcer le caractère incitatif du dispositif fiscal en faveur des équipements de l'habitation principale, cette mesure est désormais ciblée sur les équipements les plus performants au plan énergétique, ainsi que sur les équipements utilisant les énergies renouvelables. Le crédit d'impôt concerne les dépenses d'acquisition de certains équipements fournis par les entreprises ayant réalisé les travaux et faisant l'objet d'une facture, dans les conditions précisées à l'article 90 de la loi de finances pour 2005 et à l'article 83 de la loi de finances pour 2006 : http://www.industrie.gouv.fr/energie/developp/econo/textes/credit-impot-2005.htm

Cela concerne notamment l'acquisition de matériaux d'isolation thérmique des parois opaques (planchers bas sur sous-sol, sur vide sanitaire ou sur passage ouvert, avec résistance thermique $R \ge 2,4$ $M^2 \circ K/W$). Pour choisir un produit isolant, il est important de connaître sa résistance thermique «R» (aptitude d'un matériau à ralentir la propagation de l'énergie qui le traverse). Elle figure obligatoirement sur le produit. Plus «R» est important plus le produit est isolant.

Pour ces matériaux d'isolation thermique, le taux du crédit d'impôt est de 25 %. Ce taux est porté à 40 % à la double condition que ces équipements soient installés dans un logement achevé avant le 1/01/1977 et que leur installation soit réalisée au plus tard le 31 décembre de la 2^e année qui suit celle de l'acquisition du logement.

DÉSOLIDARISER LES DIFFÉRENTS ÉLÉMENTS DE STRUCTURE



Problème à résoudre : Deux parties de bâtiments accolés et fondés différemment peuvent subir des mouvements d'ampleur variable. Il convient de ce fait de désolidariser ces structures, afin que les sollicitations du sous-sol ne se transmettent pas entre elles et ainsi à autoriser des mouvements différentiels.

Descriptif du dispositif: Il s'agit de désolidariser les parties de construction fondées différemment (ou exerçant des charges variables sur le sous-sol), par la mise en place d'un joint de rupture (élastomère) sur toute la hauteur du bâtiment (y compris les fondations).

Champ d'application: Concerne tous les bâtiments d'habitation ou d'activités présentant des éléments de structures fondés différemment (niveau d'assise, type de fondation) ou caractérisés par des descentes de charges différentes. Sont également concernées les extensions de bâtiments existants (pièce d'habitation, garage, etc.).

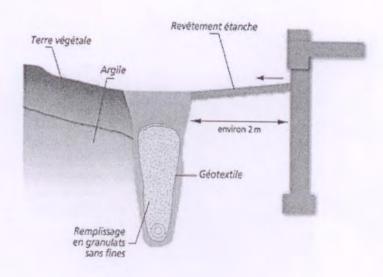
Schéma de principe

Conditions de mise en œuvre : Il est indispensable de prolonger le joint sur toute la hauteur du bâtiment.

À destination du bâti existant : La pose d'un joint de rupture sur un bâtiment existant constitue une mesure techniquement envisageable. Mais elle peut nécessiter des modifications importantes de la structure et s'avérer ainsi très délicate (les fondations étant également concernées par cette opération).

La mesure doit systématiquement être mise en œuvre dans le cadre des projets d'extension du bâti existant.

RÉALISATION D'UN DISPOSITIF DE DRAINAGE



Problème à résoudre: Les apports d'eau provenant des terrains environnants (eaux de ruissellement superficiel ou circulations souterraines), contribuent au phénomène en accroissant les variations localisées d'humidité. La collecte et l'évacuation de ces apports permettent de minimiser les mouvements différentiels du sous-sol.

Descriptif du dispositif : Le dispositif consiste en un réseau de drains (ou tranchées drainantes) ceinturant la construction ou, dans les terrains en pente, disposés en amont de celle-ci. Les volumes collectés sont dirigés aussi loin que possible de l'habitation.

Champ d'application : Concerne sans restriction tout type de bâtiment d'habitation ou d'activités.

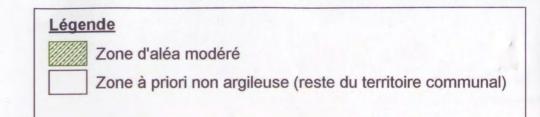
Schéma de principe

Conditions de mise en œuvre : Le réseau est constitué de tranchées remplies d'éléments grossiers (protégés du terrain par un géotextile), avec en fond de fouille une canalisation de collecte et d'évacuation (de type « drain routier ») répondant à une exigence de résistance à l'écrasement. Idéalement, les tranchées descendent à une profondeur supérieure à celle des fondations de la construction, et sont disposées à une distance minimale de 2 m du bâtiment. Ces précautions sont nécessaires afin d'éviter tout impact du drainage sur les fondations.

Les règles de réalisation des drains sont données par le DTU 20.1.

En fonction des caractéristiques du terrain, la nécessité de descendre les drains au-delà du niveau de fondation de la construction peut se heurter à l'impossibilité d'évacuer gravitairement les eaux collectées. La mise en place d'une pompe de relevage peut permettre de lever cet obstacle.

Mesure d'accompagnement : Ce dispositif de drainage complète la mesure détaillée dans la fiche n°3 (mise en place d'une ceinture étanche en périphérie du bâtiment) de façon à soustraire les fondations de la construction aux eaux de ruissellement et aux circulations souterraines.


Retrait Gonflement Argiles

Commune de MIREVAL

Cartographie de l'aléa

Echelle: 1/25 000

N

